

DMX-ETH

Integrated Step Motor Encoder/Driver/Controller with Ethernet Communication

DMX ETH Manual

COPYRIGHT © 2015 ARCUS, ALL RIGHTS RESERVED

First edition, January 2008

ARCUS TECHNOLOGY copyrights this document. You may not reproduce or translate into any language in any form and means any part of this publication without the written permission from ARCUS.

ARCUS makes no representations or warranties regarding the content of this document. We reserve the right to revise this document any time without notice and obligation.

Revision History:

1.10 – 1^{st} Release 1.15 – 2^{nd} Release 1.16 – 3^{rd} Release 1.18 – 4^{th} Release 1.19 – 5^{th} Release

Firmware Compatibility:

 $_1V230BL$

¹If your module's firmware version number is less than the listed value, contact Arcus for the appropriate documentation. Arcus reserves the right to change the firmware without notice.

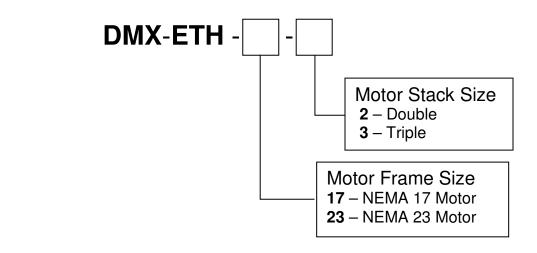
Table of Contents

1.	INTRODUCTION	5
	1.1. FEATURES	
	1.2. PART NUMBERING SCHEME	6
2	ELECTRICAL AND THERMAL SPECIFICATIONS	7
3.	DIMENSIONS	
	3.1. DMX-ETH-17	-
	3.2. DMX-ETH-23	9
4.	CONNECTIVITY	10
	4.1. 4-PIN CONNECTOR (5.08MM)	
	4.2. 14-PIN CONNECTOR (2MM)	
	4.3. DMX-ETH INTERFACE CIRCUIT	
	4.4. DIGITAL INPUTS	
	4.5. DIGITAL OUTPUTS	
_		
5.	STEPPER MOTOR DRIVER OVERVIEW	
	5.1. MICROSTEP	
	5.2. DRIVER CURRENT	
	5.3. OPERATING TEMPERATURE	
	5.4. STEPPER MOTOR SPECIFICATIONS	
	5.5. Stepper Motor Torque	18
6.	COMMUNICATION INTERFACE	20
	6.1. TYPICAL ETHERNET SETUP	20
	6.1.1. Point-to-point	20
	6.1.2. Network-based	20
	6.2. ETHERNET COMMUNICATION PROTOCOL	21
	6.2.1. Socket Settings	21
	6.2.2. ASCII Protocol	21
	6.2.3. IP Address	
	6.2.4. Changing the IP Address	22
7	GENERAL OPERATION OVERVIEW	22
1.	7.1. MOTION PROFILE AND SPEED	-
	7.2. ON-THE-FLY SPEED CHANGE	
	7.3. POSITION COUNTER.	
	7.4. MOTOR POWER	-
	7.5. JOG MOVE	
	7.6. STOPPING THE MOTOR	
	7.7. Positional Moves	
	7.8. ON-THE-FLY TARGET POSITION CHANGE	
	7.9. Homing	
	7.9.1. Home Input Only (High Speed Only)	
	7.9.2. Home Input and Z-index	
	7.9.3. Home Input Only (High Speed and Low Speed)	29
	7.9.4. Limit Only	
	7.9.5. Z-index Only	
	7.10. LIMIT SWITCH FUNCTION	
	7.11. MOTOR STATUS	
	7.12. DIGITAL INPUTS/OUTPUTS	
	7.12.1. Inputs	
	7.12.2. Outputs	
	,	-

7.13. HIGH SPEED LATCH INPUT	. 33
7.14. POLARITY	. 34
7.15. STEPNLOOP CLOSED LOOP CONTROL	. 35
7.16. STANDALONE PROGRAMMING	
7.16.1. Standalone Program Specification	
7.16.2. Standalone Control	
7.16.3. Standalone Status	
7.16.4. Standalone Subroutines	38
7.16.5. Error Handling	
7.16.6. Standalone Variables	
7.16.7. Standalone Run on Boot-Up	39
7.17. MICROSTEP DRIVER CONFIGURATION	. 39
7.18. BOOT-UP SEQUENCE	. 40
7.18.1. Hard Reset detection	. 40
7.18.2. Connection detection	
7.19. Hard Reset (Flash Memory)	
7.20. STORING TO FLASH	
7.21. DEFAULT SETTINGS	. 43
8. SOFTWARE OVERVIEW	45
8.1. MAIN CONTROL SCREEN	-
8.1.1. Status	
8.1.2. Control	
8.1.3. On-The-Fly Speed Change	
8.1.4. DIO Status	
8.1.5. Product Info	
8.1.6. Terminal	
8.1.7. Setup	
8.1.8. Standalone Program File Management	
8.1.9. Standalone Program Editor	
8.1.10.Standalone Processing	
8.1.11. Variable Status	54
8.1.12. Program Control	55
9. ASCII LANGUAGE SPECIFICATION	ГС
9.1. ASCII COMMAND SET	
9.2. Error Codes	
9.2. ERROR GODES	. 59
10. STANDALONE PROGRAMMING SPECIFICATION	
10.1. STANDALONE COMMAND SET	
10.2. Example Standalone Programs	
10.2.1. Standalone Example Program 1 – Single Thread	
10.2.2. Standalone Example Program 2 – Single Thread	
10.2.3. Standalone Example Program 3 – Single Thread	
10.2.4. Standalone Example Program 4 – Single Thread	
10.2.5. Standalone Example Program 5 – Single Thread	
10.2.6. Standalone Example Program 6 – Single Thread	
10.2.7. Standalone Example Program 7 – Multi Thread	
10.2.8. Standalone Example Program 8 – Multi Thread	. 67
A: SPEED SETTINGS	. 68
A.1 ACCELERATION/DECELERATION RANGE	
A.2 Acceleration/Deceleration Range – Positional Move	. 69

1. Introduction

DMX-ETH is an integrated stepper controller + driver + motor motion product. Communication to the DMX-ETH can be established over Ethernet. It is also possible to download a stand-alone program to the device and have it run independent of a host.


Windows and Linux drivers as well as sample source code are available to aid you in your software development.

1.1. Features

- 10Mbps Ethernet communication
 - ASCII
 - TCP/IP
- A/B/Z differential encoder
 - StepNLoop closed loop control (position verification)
 - 1000 line incremental encoder (4000 counts/rev with 4x quadrature decoding)
- Opto-isolated I/O
 - 2 x inputs
 - 2 x outputs
 - +Limit/-Limit/Home inputs
- Homing routines:
 - Home input only (high speed)
 - Home input only (high speed + low speed)
 - Limit only
 - Z-index encoder channel only
 - Home input + Z index encoder channel
- S-curve or trapezoidal acceleration profile control
- On-the-fly speed change
- Stepper driver
 - 12-48 VDC
 - 3.0 Amp max current setting (peak current)
 - 2 to 500 micro-step setting
 - 1 MHz max pulse support
- Stepper motor
 - NEMA 17/23 motor sizes available in different stack sizes

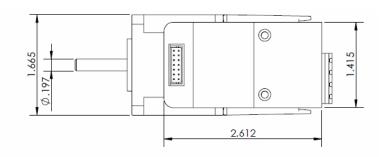
1.2. Part Numbering Scheme

Contacting Support

For technical support contact: <u>support@arcus-technology.com</u>. Or, contact your local distributor for technical support.

2. Electrical and Thermal Specifications

Parameter	Min	Max	Units
Main Power Input	+12	+48	V
	-	3.0	А
Digital Inputs	+12	+24	V
(DI, Home, Lim, Latch)	-	45	mA
Digital Outputs (DO)	-	+24	V
	-	90 ₁	mA
Operating Temperature 2	-20	80	C°
Storage Temperature 2	-55	150	C


Table 2.0

A current limiting resistor is required.
 2 Based on component ratings.

3. Dimensions

3.1. DMX-ETH-17

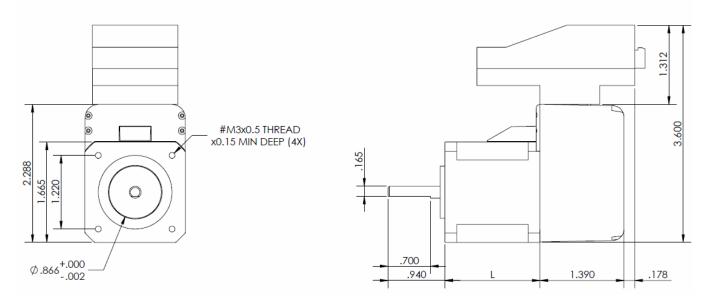


Figure 3.0

NEMA 17 Models	L (inches)
DMX-ETH-17-2 (double stack)	1.58
DMX-ETH-17-3 (triple stack)	1.89

Table 3.0

1.350

.220

3.2. DMX-ETH-23

2.220

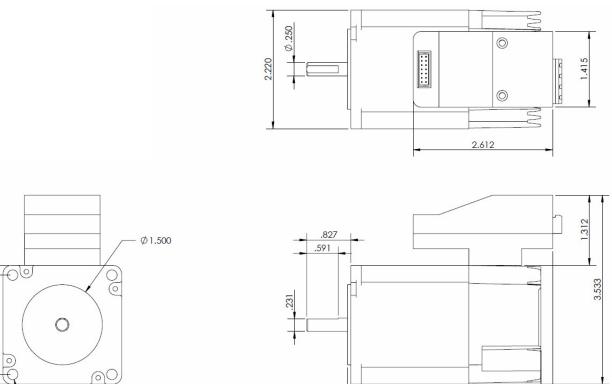


Figure 3.1

.063

NEMA 23 Models	L (inches)
DMX-ETH-23-2 (double stack)	2.20
DMX-ETH-23-3 (triple stack)	2.99

Table 3.1

Ø.197 (4X)

4. Connectivity

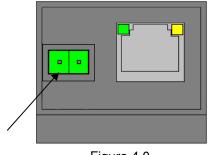
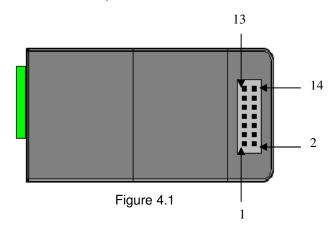


Figure 4.0

4.1. 4-Pin Connector (5.08mm)


1

Pin #	In/Out	Name	Description	
1	I	GND	Ground	
2	I	V+	Power Input +12 to +48VDC	

Table 4.0

Mating Connector Description: Mating Connector Manufacturer: Mating Connector Manufacturer Part: 2 pin 0.2" (5.08mm) connector On-Shore 1EDZ950/2

¹ Other 5.08mm compatible connectors can be used.

4.2. 14-Pin Connector (2mm)

Pin #	Wire Color	In/Out	Name	Description
1	Orange	I	OPTO	+12 to +24VDC opto-supply input – used for limit, home, latch, and digital inputs
2	Orange	Ι	ΟΡΤΟ	+12 to +24VDC opto-supply input – used for limit, home, latch, and digital inputs
3	Yellow/Orange	I	LATCH	Latch input
4	White		HOME	Home input
5	Yellow/White	I	-LIM	Minus limit input
6	Yellow	I	+LIM	Plus limit input
7	Brown/Yellow	I	DI1	Digital Input 1
8	Brown/Yellow	I	DI2	Digital Input 2
9	Black/Yellow	0	DO1	Digital Output 1
10	Black/Yellow	0	DO2	Digital Output 2
11	Gray	NC	NC	Not Connected
12	Gray	NC	NC	Not Connected
13	Gray	NC	NC	Not Connected
14	Gray	NC	NC	Not Connected

Table 4.1

Mating Connector Description: Mating Connector Manufacturer: Mating Connector Housing Part Number: DF11-14DS-2C Mating Connector Pin Part Number:

14 pin 2mm dual row connector HIROSE DF11-2428SC

4.3. DMX-ETH Interface Circuit

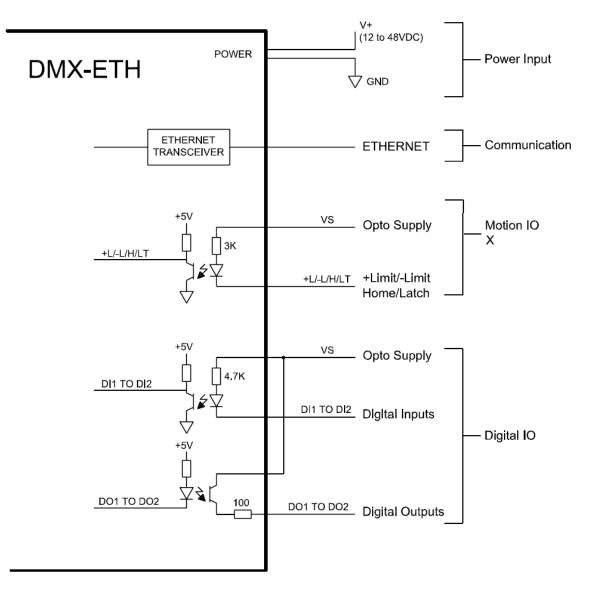


Figure 4.2

4.4. Digital Inputs

Figure 4.3 shows the detailed schematic of the opto-isolated limit, home, and general purpose inputs. All opto-isolated digital inputs are NPN type.

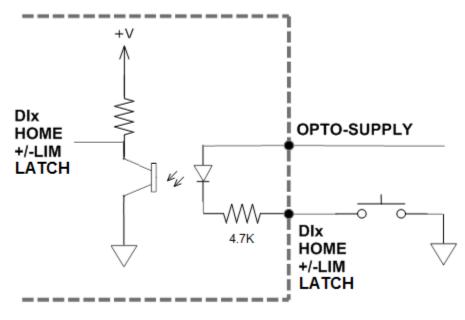


Figure 4.3

The opto-supply must be connected to +12 to +24VDC in order for the limit, home, and digital inputs to operate.

When the digital input is pulled to ground, current will flow from the opto-supply to ground, turning on the opto-isolator and activating the digital input.

To de-activate the input, the digital input should be left unconnected or pulled up to the opto-supply, preventing current from flowing through the opto-isolator.

4.5. Digital Outputs

Figure 4.4 shows an example wiring to the digital output. All opto-isolated digital outputs will be PNP type.

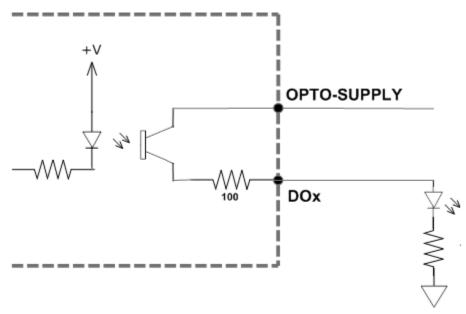


Figure 4.4

The opto-supply must be connected to +12 to +24VDC in order for the digital outputs to operate.

When activated, the opto-isolator for the digital output pulls the voltage on the digital output line to the opto-supply. The maximum source current for digital outputs is 90mA. Take caution to select the appropriate external resistor so that the current does not exceed 90mA.

When deactivated, the opto-isolator will break the connection between the digital output and the opto-supply.

5. Stepper Motor Driver Overview

5.1. Microstep

The standard DMX-ETH motor is a 1.8 degree motor, which translates to 200 full steps per revolution. These steps can be divided with microstepping to increase position resolution. DMX-ETH comes with bipolar step motor and has configurable microstep setting range from 2 to 500 microsteps.

5.2. Driver Current

The DMX-ETH will have a maximum rated driver current that is dependent on the stack size of the motor. See table 5.0 for details.

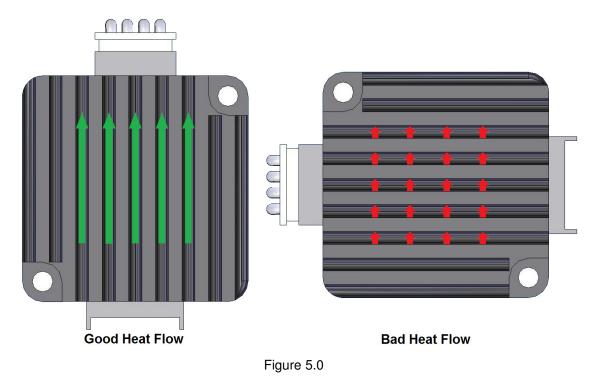
Setting the driver current higher than the maximum rated current will overheat the motor and driver and potentially damage the unit. It is recommended to use a current setting that is in the range of 60-80% of the maximum rated current for the motor.

DMX-ETH has configurable current setting from 100mA to 3.0A. Driver current is set to the "Run Current" setting whenever the motor is moving. Similarly, the driver current is set to the "Idle Current" setting when the motor is idle for a period of time longer than the "Idle Time" setting. See section 7.17 for more details regarding the available driver settings.

The Run Current and the Idle Current should not go over the maximum rated current for each motor size. Use table 5.0 as a reference on maximum rated current setting.

Product	Maximum Peak Rated Driver Current Setting (Amp)
DMX-ETH-17-2	1.7
DMX-ETH-17-3	2.0
DMX-ETH-23-2	3.0
DMX-ETH-23-3	3.0

Т	abl	le	5.0	
		-		
I.	av	C,	0.0	


5.3. Operating Temperature

Electronic components used in the DMX-ETH have a maximum ambient operating temperature of **85 C**°. DMX-ETH electronics are potted with heat-conductive compound to the housing to evenly distribute the heat and reduce any hot spots in the driver. The housing also has integrated fins to better dissipate the heat.

DMX-ETH should be mounted securely to a metallic bracket that can also act as a heat-sink. During operation, the step motor section typically becomes hotter than the driver section. Having the step motor mounted to a heat sink will help dissipate the heat generated by the step motor.

DMX-ETH mounting orientation should be such that the fins are oriented vertically for better convection and heat dissipation. See Figure 5.0 below.

DMX-ETH has a temperature sensor to detect over heating of the driver. Temperature sensing is done only when the driver is enabled. When the temperature goes over the over-temperature alarm value 70 C°, the Alarm Output is turned on. If the temperature goes below the 68 C°, the alarm output is turned off. If the temperature goes over 75 C°, the driver is automatically turned off and remained off until the temperature goes below 68 C°.

For details on the over temperature alarm, see Figure 5.1.

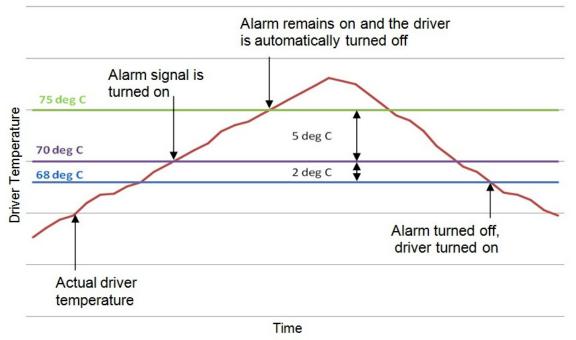


Figure 5.1

5.4. Stepper Motor Specifications

Following chart shows the specifications of standard step motors used for DMX-ETH products. All standard DMX-ETH step motors are 1.8 degree bi-polar step motors.

NEMA Size	Stack Size	Max Amp / Phase	Resistance / Phase	Inductance / Phase	Inertia
17	Double	1.7A	1.5 Ω	3.0 mH	0.28 oz-in ²
17	Triple	2.0A	1.4 Ω	2.7 mH	0.37 oz-in ²
23	Double	2.8A	0.9 Ω	2.5 mH	1.64 oz-in ²
23	Triple	2.8A	1.13 Ω	3.6 mH	2.62 oz-in ²

T	ab	le	5	1
	av	iC.	υ.	

NEMA Size	Stack Size	Max Axial Force	Max Radial Force
17	Double	15N	10N
17	Triple	15N	10N
23	Double	15N	75N
23	Triple	15N	75N

Table	5.2
-------	-----

5.5. Stepper Motor Torque

The torque output of the DMX-ETH will vary depending on the supply voltage, driver current, motor type, and target speed of the motor.

Increasing the drive current will increase the torque output, however the operating temperature will also increase. While decreasing the drive current will reduce the torque output, it will help reduce the operating temperature as well. Each application will need to adjust this setting to find the desired driver output.

Using a higher voltage to power the DMX-ETH will allow the motor to run at faster speeds. Note that increasing the voltage will not increase the maximum holding torque of the motor.

Stepper motors in general will drop off in torque as the target speed of the motor is increased. The following torque curve shows the expected torque output based on the motor speed of the DMX-ETH.

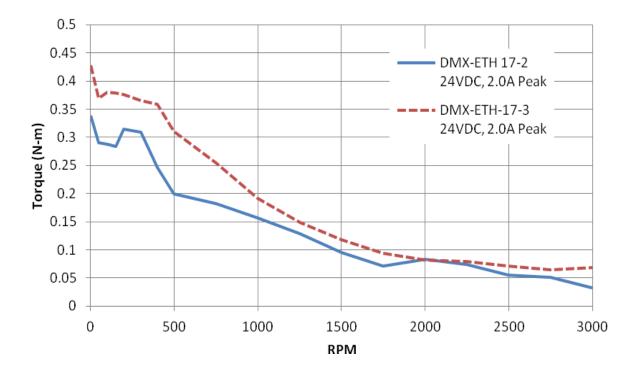


Figure 5.2

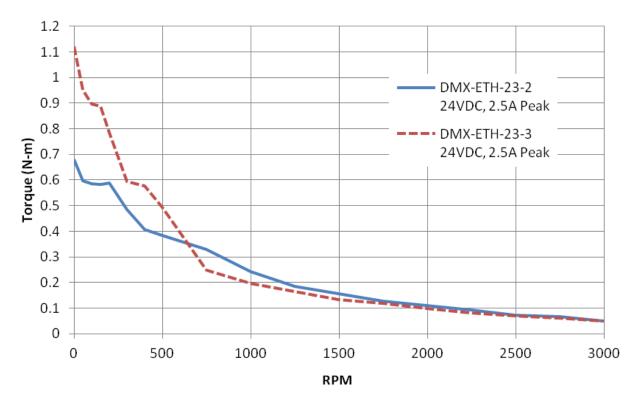


Figure 5.3

6. Communication Interface

6.1. Typical Ethernet Setup

DMX-ETH can connect to the computer directly or through a network. See figure 6.0 for point-to-point wiring and figure 6.1 for network wiring.

6.1.1. Point-to-point

The Ethernet connection is made directly from the computer to the DMX-ETH with a cross-over cable.

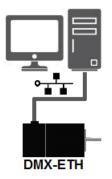


Figure 6.0

6.1.2. Network-based

The Ethernet connection is made from the computer to an Ethernet Hub and then to the DMX-ETH.

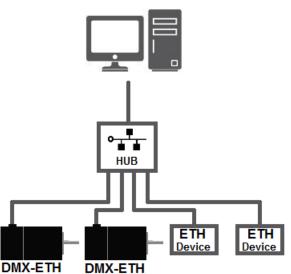


Figure 6.1

6.2. Ethernet Communication Protocol

DMX-ETH uses 10Mbps Ethernet ASCII communication over TCP/IP.

Communication between the PC/PLC and DMX-ETH is done using standard socket programming.

6.2.1. Socket Settings

Port: 5001

6.2.2. ASCII Protocol

Sending Command ASCII command string in the format of [ASCII Command][NUL] [NUL] character has ASCII code 0.

Receiving Reply The response will be in the format of [Response][NUL] [NUL] character has ASCII code 0.

Examples:

For querying the x-axis polarity Send: POL[NUL] Reply: 7[NUL]

For jogging the x-motor in positive direction Send: J+[NUL] Reply: OK[NUL]

For aborting any motion in progress Send: ABORT[NUL] Reply: OK[NUL]

6.2.3. IP Address

Set the IP address of the DMX-ETH module using the IP command. See default IP/socket settings below:

IP: 192.168.1.250 Port: 5001

Note: To begin communication with a factory default device, configure the PC control panel with the following settings:

```
IP = 192.168.1.xxx
```

Subnet Mask = 255.255.255.0

See sample configuration below:

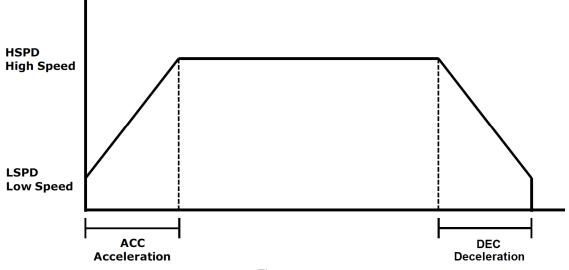
Networking	Internet Protocol Version 4 (TCP/IP	v4) Properties
Connect using:	General	
Realtek PCIe FE Family Controller		utomatically if your network supports ed to ask your network administrator
This connection uses the following items:	 Obtain an IP address automa Obtain an IP address: 	
 ✓ ■ File and Printer Sharing for Microsoft Net ✓ ▲ Internet Protocol Version 6 (TCP/IPv6) 		192.168.1.56
Internet Protocol Version 4 (TCP/IPv4)	Subnet mask:	255.255.255.0
 Link-Layer Topology Discovery Mapper I Link-Layer Topology Discovery Responded 	Default gateway:	192.168.1.1
	Obtain DNS server address a	utomatically
Install Uninstall	Ouse the following DNS server	addresses:
Description Transmission Control Protocol/Internet Protocol	Preferred DNS server:	192.168.1.1
wide area network protocol that provides comm across diverse interconnected networks.		• • •
OK	Validate settings upon exit	Advanced
	-	OK Cancel

Figure 6.2

6.2.4. Changing the IP Address

DMX-ETH provides the user with the ability to set the device IP of the module.

To write the values to the device's flash memory, use the **STORE** command. After a complete power cycle, the new IP will be written to memory. Note that before a power cycle is completed, the settings will not take effect.



7. General Operation Overview

Important Note: All the commands described in this section are defined as ASCII or standalone commands. ASCII commands are used when communicating over Ethernet. Standalone commands are using when writing a standalone program onto the DMX-ETH.

7.1. Motion Profile and Speed

By default, a trapezoidal velocity profile is used. See Figure 7.0.

S-curve velocity profile can also be achieved by using the **SCV=1** command, as shown in Figure 7.1.

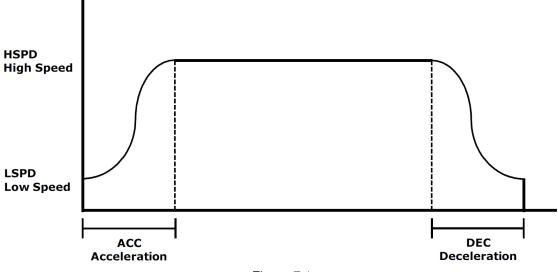


Figure 7.1

Once a typical move is issued, the motor will immediately start moving at the low speed setting and accelerate to the high speed. Once at high speed, the motor will move at a constant speed until it decelerates from high speed to low speed and immediately stops.

High speed and low speed are in pps (pulses/second). Use the **HSPD** and **LSPD** commands to modify the high speed and low speed settings. Depending on the voltage, current, motor type, and acceleration value, the maximum achievable speed will vary.

Acceleration and deceleration time is in milliseconds. Use the **ACC** command to access the acceleration setting and the **DEC** command to access the deceleration setting. By default, the acceleration setting will be used for both the acceleration and deceleration in the motion profile. In order to decelerate using the value set in the **DEC** parameter, set the **EDEC** setting to 1.

The minimum and maximum acceleration/deceleration values depend on the high speed and low speed settings. Refer to Table A.0 and Figure A.0 in **Appendix A** for details.

ASCII	HSPD	LSPD	ACC	DEC	EDEC	SCV
Standalone	HSPD	LSPD	ACC	DEC	-	SCVX

7.2. On-The-Fly Speed Change

An on-the-fly speed change can be achieved at any point while the motor is in motion. In order to perform an on-the-fly speed change, s-curve velocity profile must be disabled.

Before an on-the-fly speed change is performed, the correct speed window must be selected. To select a speed window, use the ASCII command **SSPDM** or the standalone command **SSPDMX**. Choosing the correct speed window will depend on the initial target speed and the final target speed. Both speeds will need to be within the same speed window.

The speed window must be set while the motor is idle. Refer to **Appendix A** for details on the speed windows.

Once the speed window has been set, an on-the-fly speed change can occur anytime the motor is in motion. The ASCII command **SSPD=[speed]** or the standalone command **SSPDX=[speed]** can be used to perform the actual speed change.

For non on-the-fly speed change moves, set the speed window to 0.

ASCII	SSPD	SSPDM
Standalone	SSPDX	SSPDMX

7.3. Position Counter

DMX-ETH has 32 bit signed step position counter. Range of the position counter is from -2,147,483,648 to 2,147,483,647. Get the current step position by using the **PX** command.

The **PX** command can also be used to manually set the position of the motor. If the motor is moving while an attempt is made to set the position, an error will be returned and the position will remain unchanged.

Similarly, the DMX-ETH also has a 32 bit signed encoder position counter. The built in encoder will have a resolution of 1000 counts/revolution. With quadrature decoding, the resolution is increased to 4000 counts/revolution. Use the **EX** command to read and set the encoder position.

When StepNLoop closed-loop control is enabled, the **EX** command returns the encoder position and the **PX** command returns the real-time target position of the motor.

When StepNLoop closed-loop control is disabled, the **EX** command returns the encoder position and the **PX** command returns the step position. See section 7.16 for details on the StepNLoop feature.

ASCII	PX	EX
Standalone	PX	EX

7.4. Motor Power

Using the **EO** command, the motor power can be enabled or disabled. By default, the enable output is turned off at boot-up.

The initial state of the enable output can be defined by setting the **EOBOOT** register to the desired initial enable output value. The value is stored to flash memory once the **STORE** command is issued.

ASCII	EO	EOBOOT
Standalone	EO	-

7.5. Jog Move

A jog move is used to continuously move the motor without stopping. Use the J+/J- command when operating in ASCII mode and the JOGX+/JOGX- in standalone mode. Once this move is started, the motor will only stop if a limit input is activated during the move or a stop command is issued.

If a motion command is sent while the controller is already moving, the command is not processed. Instead, an error response is returned. See table 9.1 for details on error responses.

ASCII	J[+/-]
Standalone	JOGX[+/-]

7.6. Stopping the Motor

When the motor is performing any type of move, motion can be stopped abruptly or with deceleration. It is recommended to use decelerated stops so that there is less impact on the system. To stop abruptly, use the **ABORT** command in ASCII mode and **ABORTX** in standalone. The ASCII command **STOP**, and standalone command **STOPX**, can be used to stop the motor with deceleration.

ASCII	STOP	ABORT
Standalone	STOPX	ABORTX

7.7. Positional Moves

Positional moves are used to move the motor to a desired position. The **X[target]** command should be used make positional moves.

When StepNLoop is enabled, the target position in positional moves will be in units of encoder counts. When StepNLoop is disabled, the target position will be in units of motor steps. See section 7.15 for details on the StepNLoop feature.

The DMX-ETH also has the ability to move in an absolute or incremental mode. Absolute move mode will move the motor to the target position, while incremental move mode will increment the current position by the target position. The **INC** and **ABS** commands set the move mode. Use the **MM** command to read the current move mode. If the **MM** command returns 0, the motor is in absolute mode. A value of 1 will indicate the motor is in increment mode.

If a motion command is sent while the controller is already moving, the command is not processed. Instead, an error response is returned. See table 9.1 for details on error responses.

ASCII	X[pos]	INC	ABS	MM
Standalone	X[pos]	INC	ABS	-

7.8. On-The-Fly Target Position Change

On-the-fly target position change can be achieved using the **T[value]** command. While the motor is moving, **T[value]** will change the final destination of the motor. If the motor has already passed the new target position, it will reverse direction when the target position change command is issued.

If a **T** command is sent while the controller is not performing a target move, the command is not processed. Instead, an error response is returned. See table 9.1 for details on error responses.

ASCII	T[pos]
Standalone	-

7.9. Homing

Home search routines involve moving the motor and using the home, limit, or Zindex inputs to determine the zero reference position. Five different types of homing routines are available.

The homing routines that involve a decelerated stop will result in a final position that is non-zero. In this case the zero reference position will be the position where the deceleration occurred. The ASCII command **RZ=1** can be used to perform an automated return to the zero reference position after the deceleration is complete.

If a motion command is sent while the controller is already moving, the command is not processed. Instead, an error response is returned. See table 9.1 for details on error responses.

7.9.1. Home Input Only (High Speed Only)

Use the **H**+/- command for ASCII mode or the **HOMEX**+/- command for standalone mode. Figure 7.2 shows the homing routine.

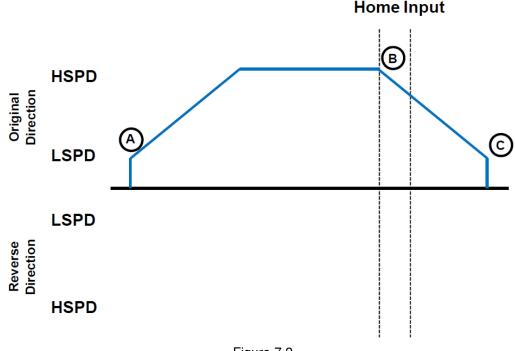
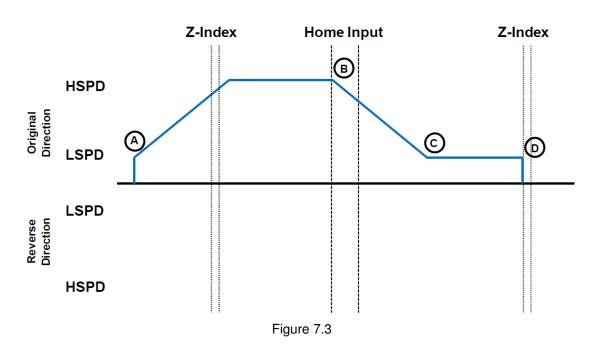


Figure 7.2

- A. Starts the motor from low speed and accelerates to high speed in search of the home input.
- B. As soon as the home input is triggered, the position counter is reset to zero and the motor begins to decelerate to low speed. As the motor


decelerates, the position counter keeps counting with reference to the zero position.

C. Once low speed is reached, the motor stops. The position is non-zero however the zero position is maintained. If **RZ=1**, the motor will return to its actual zero position.

ASCII	H+/-	RZ
Standalone	HOMEX+/-	-

7.9.2. Home Input and Z-index

Use the **ZH**+/- command for ASCII mode or the **ZHOMEX**+/- command for standalone mode. Figure 7.3 shows the homing routine.

- A. Issuing the command starts the motor from low speed and accelerates to high speed in search of the home input.
- B. As soon as the home input is triggered, the motor decelerates to low speed
- C. Once low speed is reached, the motor begins to search for the z-index pulse.
- D. Once the z-index pulse is found, the motor stops and the position is set to zero.

ASCII	ZH+/-
Standalone	ZHOME+/-

7.9.3. Home Input Only (High Speed and Low Speed)

Use the **HL+**/- command for ASCII mode or the **HLHOMEX+**/- command for standalone mode. Figure 7.4 shows the homing routine.

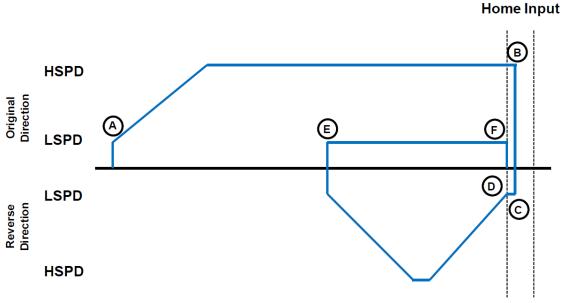


Figure 7.4

- A. Starts the motor from low speed and accelerates to high speed in search of the home input.
- B. As soon as the home input is triggered, the position counter is reset to zero and the motor immediately stops.
- C. The motor moves at low speed in the reverse direction until the home input has been cleared.
- D. Once the home input is cleared, the motor will continue to move in the reverse direction by the amount defined by the home correction amount (HCA). It will ramp up to high speed for this movement.
- E. The motor is now past the home input by the amount defined by the home correction amount (**HCA**). The motor now moves back towards the home switch at low speed.
- F. The home input is triggered again, the position counter is reset to zero and the motor immediately stops.

ASCII	HL+/-	HCA
Standalone	HLHOMEX+/-	-

7.9.4. Limit Only

Use the L+/- command in ASCII mode or the LHOMEX+/- command for standalone mode. Figure 7.5 shows the homing routine.

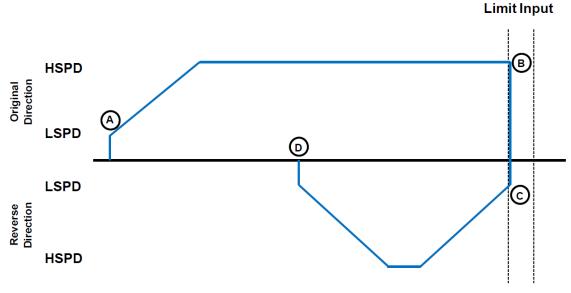


Figure 7.5

- A. Starts the motor from low speed and accelerates to high speed in search of the specified limit input.
- B. As soon as the relevant limit input is triggered, the motor immediately stops motion.
- C. The motor position will be set to the limit correction amount (**LCA**). It will the move in the reverse direction at high speed.
- D. Once the limit correction amount move is complete, the motor position will read zero.

ASCII	L+/-	LCA
Standalone	LHOMEX+/-	-

7.9.5. Z-index Only

Use the **Z**+/- command for ASCII mode or the **ZOMEX**+/- command for standalone mode. Figure 7.6 shows the homing routine.

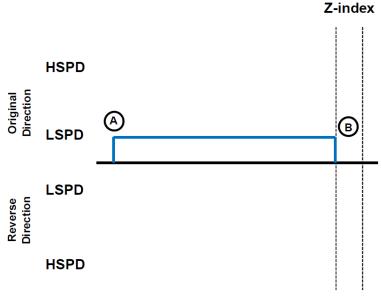


Figure 7.6

- A. Issuing the command starts the motor at low speed.
- B. Once the z-index pulse is found, the motor stops and the position is set to zero.

ASCII	Z+/-
Standalone	ZOMEX+/-

7.10. Limit Switch Function

With the limit switch function enabled, triggering of the limit switch while the motor is moving will stop the motion immediately. For example, if the positive limit switch is triggered while moving in the positive direction, the motor will immediately stop and the motor status bit for positive limit error is set. The same will apply for the negative limit while moving in the negative direction.

Once the limit error is set, the status error must be cleared, using the CLR command in ASCII mode or the ECLEARX command in the standalone mode, in order to move the motor again.

The limit error state can be ignored by setting **IERR**=1. In this case, the motor will still stop when the limit switch is triggered; however it will not enter an error state.

ASCII	CLR	IERR
Standalone	ECLEARX	-

7.11. Motor Status

Motor status can be read anytime using the **MST** command. Table 7.0 shows the bit representation for motor status.

Bit	Description
0	Motor running at constant speed
1	Motor in acceleration
2	Motor in deceleration
3	Home input switch status
4	Minus limit input switch status
5	Plus limit input switch status
6	Minus limit error. This bit is latched when minus limit is hit during
	motion. This error must be cleared using the CLR command before
	issuing any subsequent move commands.
7	Plus limit error. This bit is latched when plus limit is hit during
	motion. This error must be cleared using the CLR command before
	issuing any subsequent move commands.
8	Latch input status
9	Z-index status
10	TOC time-out status

Table 7.0

ASCII	MST
Standalone	MSTX

7.12. Digital Inputs/Outputs

DMX-ETH module comes with 2 digital inputs and 2 digital outputs.

7.12.1. Inputs

The digital input status of all 2 available inputs can be read with the DI command. Digital input values can also be referenced one bit at a time by using the **DI[1-2]** commands. Note that the indexes are 1-based for the bit references. For example, DI1 refers to bit 0, not bit 1. See Table 7.1 for details.

Bit	Description	Bit-Wise Command
0	Digital Input 1	DI1
1	Digital Input 2	DI2

Table 7.1

ASCII	DI	DI[1-2]
Standalone	DI	DI[1-2]

7.12.2. Outputs

The DMX-ETH can drive or read digital outputs DO1 and DO2 by using the **DO** command. DO value must be within the range of 0-3.

Digital output values can also be referenced one bit at a time by the **DO[1-2]** commands. Note that the indexes are 1-based for the bit references. For example, DO1 refers to bit 0, not bit 1. See Table 7.2 for details.

	Bit	Description	Bit-Wise Commands
ſ	0	Digital Output 1	DO1
ſ	1	Digital Output 2	DO2

Table	7.2
1 4010	· · -

If digital output is turned on, the corresponding bit of the **DO** command is 1. Otherwise, the bit status is 0. The voltage level of the digital output when it is on or off is determined by the polarity setting. See section 7.15 for details. Digital outputs are active low by default.

The initial state of both digital outputs can be defined by setting the **DOBOOT** register to the desired initial digital output value. The value is stored to flash memory once the **STORE** command is issued.

ASCII	DO	DO[1-2]	DOBOOT
Standalone	DO	DO[1-2]	-

7.13. High Speed Latch Input

The DMX-ETH module provides a high speed position latch input.

This input performs high speed position capture of both pulse and encoder positions but does not reset the pulse or encoder position counters.

When StepNLoop mode is enabled, the position value will be the current target position of the motor.

Use the **LT** command in ASCII mode or the **LTX** command in standalone mode to enable and disable latch feature. To read the latch status, use the **LTS** ASCII command or the **LTSX** standalone command. Table 7.3. details the value representation of the latch status.

Return Value	Description
0	Latch off
1	Latch on and waiting for latch trigger
2	Latch triggered

Table 7.3

Once the latch is triggered, the triggered positions can be retrieved using the **LTP** ASCII command or the **LTPX** standalone command (latched pulse position) and the **LTE** ASCII command or the **LTEX** standalone command (latched encoder position) commands.

ASCII	LT	LTS	LTP	LTE
Standalone	LTX	LTSX	LTPX	LTEX

7.14. Polarity

Using the **POL** command, polarity of following signals can be configured:

Bit	Description		
0	Reserved		
1	Direction		
2	Reserved		
3	Reserved		
4	Limit		
5	Home		
6	Latch		
7	Z-channel index		
8,9	Encoder decoding		
	00	1X	
	01	2X	
	10	4X	
10	Digital Output		
11	Digital Input		
12	Jump to line 0 on error		
13	Enable Output		

Table 7.4

The jump to line 0 polarity option defined by bit 11 indicates the return line once a standalone program has recovered from an error state. If this bit is low, the standalone program will return to the last processed line. If this bit is high, then it will return to the first line of the program.

All other polarity options indicate whether the input or output is active high or active low.

ASCII	POL
Standalone	-

7.15. StepNLoop Closed Loop Control

DMX-ETH features a closed-loop position verification algorithm called StepNLoop (SNL). The algorithm requires the use of an incremental encoder that is included in a standard DMX-ETH.

SNL performs the following operations:

- 1) <u>Position Verification:</u> At the end of any targeted move, SNL will perform a correction if the current error is greater than the tolerance value.
- 2) <u>Delta Monitoring</u>: The delta value is the difference between the actual and target position. When delta exceeds the error range value, the motor is stopped and the SNL Status goes into an error state. Delta monitoring is performed during moves – including homing and jogging. To read the delta value, use the **DX** command.

See Table 7.5 for a list of the SNL control parameters.

SNL Parameter	Description	Command
StepNLoop Ratio	Ratio between motor pulses and encoder counts. This ratio will depend on the motor type, micro-stepping, encoder resolution and decoding multiplier. Value must be in the range [0.001, 999.999].	SLR
Tolerance	Maximum error between target and actual position that is considered "In Position". In this case, no correction is performed. Units are in encoder counts.	SLT
Error Range	Maximum error between target and actual position that is not considered a serious error. If the error exceeds this value, the motor will stop immediately and go into an error state.	SLE
Correction Attempt	Maximum number of correction tries that the controller will attempt before stopping and going into an error state.	SLA

Table 7.5

¹A convenient way to find the StepNLoop ratio is to set EX=0, PX=0 and move the motor +1000 pulses. The ratio can be calculated by dividing 1000 by the resulting EX value. Note that the value must be positive. If it is not, then the direction polarity must be adjusted. See Table 7.4 for details.

To enable/disable the StepNLoop feature use the **SL** ASCII command or the **SLX** standalone command. To read the StepNLoop status, use **SLS** ASCII command

or the **SLSX** standalone command. See Table 7.6 for a list of the StepNLoop status return values.

Return Value	Description	
0	Idle	
1	Moving	
2	Correcting	
3	Stopping	
4	Aborting	
5	Jogging	
6	Homing	
7	Z-Homing	
8	Correction range error. To clear this error,	
	use CLRS or CLR command.	
9	Correction attempt error. To clear this	
	error, use CLRS or CLR command.	
10	Stall Error. DX value has exceeded the	
	correction range value. To clear this error,	
	use CLRS or CLR command.	
11	Limit Error	
12	N/A (i.e. SNL is not enabled)	
13	Limit homing	

Table 7.6

Depending on the value of the delta, the StepNloop algorithm can have certain behaviors. See Table 7.7 for StepNLoop behavior within different scenarios.

Condition	SNL behavior (motor is moving)	SNL behavior (motor is idle)	
δ <= SLT	Continue to monitor the DX	In Position. No correction is performed.	
δ > SLT AND δ < SLE	Continue to monitor the DX	Out of Position. A correction is performed.	
δ > SLT AND δ > SLE	Stall Error. Motor stops and signals and error.	Error Range Error. Motor stops and signals and error.	
Correction Attempt > SLA	NA	Max Attempt Error. Motor stops and signals and error.	

Table 7.7

<u>Key</u>

- $[\delta]$: Error between the target position and actual position
- SLT: Tolerance range
- SLE: Error range
- SLA: Max correction attempt

Once SNL is enabled, position move commands are in terms of encoder position. For example, X1000 means to move the motor to the encoder position 1000.

Once SNL is enabled, the speed is in encoder speed. For example HSPD=1000 when SNL is enabled means that the target high speed is 1000 encoder counts per second.

7.16. Standalone Programming

Standalone programming allows the controller to execute a user defined program that is stored in the internal memory of the DMX-ETH. The standalone program can be run independently of serial communication or while communication is active.

Standalone programs can be written to the DMX-ETH using the Windows GUI described in section 8. Once a standalone program is written by the user, it is then compiled and downloaded to the DMX-ETH. Each line of written standalone code creates 1-4 assembly lines of code after compilation

The DMX-ETH has the ability to store and operate two separate standalone programs simultaneously.

7.16.1. Standalone Program Specification

Memory size:7650 assembly lines ~ 44.5 KB. Note: Each line of pre-compiled code equates to 1-4 lines of assembly lines.

7.16.2. Standalone Control

The DMX-ETH supports the simultaneous execution of two standalone programs. Program 0 is controlled via the **SR0** command and program 1 is controlled via the **SR1** command. For examples of multi-threading, please refer to section 10. The following assignments can be used to control a standalone program.

Value	Description	
0	Stop standalone program	
1	Start standalone program	
2	Pause standalone program	
3	Continue standalone program	

Table 7.8

7.16.3. Standalone Status

The **SASTAT[0-1]** command can be used to determine the current status of the specified standalone program. Table 7.9 details the return values of this command.

Value	Description
0	ldle
1	Running

2	Paused
3	N/A
4	Errored

Tab	le	7.	9
i uo	.0		•

The **SPC[0-1]** command can also be used to find the current assembled line that the specified standalone program is executing. Note that the return value of the **SPC[0-1]** command is referencing the assembly language line of code that does not directly transfer to the pre-compiled user generated code. The return value can range from [0-7649].

7.16.4. Standalone Subroutines

The DMX-ETH has the capabilities of using up to 32 separate subroutines. Subroutines are typically used to perform functions that are repeated throughout the operation of the standalone program. Note that subroutine can be shared by both standalone programs. Refer to section 10 for further details on how to define subroutines.

Once a subroutine is written into the flash, they can be called via Ethernet communication using the **GS** command. Standalone programs can also jump to subroutine using the **GOSUB** command. The subroutines are referenced by their subroutine number [SUB 0 - SUB 31]. If a subroutine number is not defined, the controller will return with an error.

7.16.5. Error Handling

Subroutine 31 is designated for error handling. If an error occurs during standalone execution (i.e. limit error, StepNLoop error), the standalone program will automatically jump to SUB 31. If SUB 31 is not defined, the program will cease execution and go into error state.

If SUB 31 is defined by the user, the code within SUB 31 will be executed. Typically the code within subroutine 31 will contain the standalone command **ECLEARX** in order to clear the current error. Section 10 will contain examples of using subroutine 31 to perform error handling.

The return jump from subroutine 31 will be determined by bit 12 of the **POL** register. This setting will determine if the standalone program will jump back to the beginning of the program or to the last performed line. Refer to table 7.4 for details.

7.16.6. Standalone Variables

The DMX-ETH has 100 32-bit signed standalone variables available for general purpose use. They can be used to perform basic calculations and support integer operations. The **V[1-100]** command can be used to access the specified

variables. The syntax for all available operations can be found below. Note that these operations can only be performed in standalone programming.

Operator	Description	Example
+	Integer Addition	V1=V2+V3
-	Integer Subtraction	V1=V2-V3
*	Integer Multiplication	V1=V2*V3
/	Integer Division (round down)	V1=V2/V3
%	Modulus	V1=V2%5
>>	Bit Shift Right	V1=V2>>2
<<	Bit Shift Left	V1=V2<<2
&	Bitwise AND	V1=V2&7
	Bitwise OR	V1=V2 8
~	Bitwise NOT	V1=~V2

Table 7.10

Variables V51 through V100 can be stored to flash memory using the **STORE** command. Variables V1-V50 will be initialized to zero on power up.

7.16.7. Standalone Run on Boot-Up

Standalone can be configured to run on boot-up using the **SLOAD** command. Once this command has been issued, the **STORE** command will be needed save the setting to flash memory. It will take effect on the following power cycle. See description in Table 7.1 for the bit assignment of the **SLOAD** setting.

Bit	Description	
0	Standalone Program 0	
1	Standalone Program 1	

Table 7.11

Standalone programs can also be configured to run on boot-up using the Windows GUI. See section 8 for details.

ASCII	SR[0-1]	SASTAT[0-1]	SPC[0-1]	GS[0-31]	V[1-100]	SLOAD
Standalone	SR[0-1]	-	-	GOSUB[0-31]	V[1-100]	-

7.17. Microstep Driver Configuration

The built in driver of DMX-ETH can be configured via software. See below for commands relating to driver configuration.

Command	Description
DRVMS	Micro-stepping value of the driver [2-500].
DRVRC	Run current value of the driver [100-3000 mA] (peak current).

	· · · · · · · · · · · · · · · · · · ·
DRVIC	Idle current value of the driver [100-2800 mA] (peak current).
DRVIT	Idle time value of the driver [1-100 centi-sec]. This is the amount of time the driver waits before dropping from the run current to idle
DITVIT	current value.
	Get the driver parameters. DRVMS/DRVRC/DRVIC/DRVIT values
RR	will not be valid until the controller reads the driver parameters by
	issuing the RR command. Once this command is issued,
	communication to DMX- ETH will not be available for 2 seconds.
	Get the read operation status. After issuing the RR command and
R2	waiting 2 seconds, get the read operation status by using the R2
n2	command. A return value of 1 signifies a successful read. All other
	return values signify a failed read operation.
	Write driver parameters. After DRVMS/DRVRC/DRVIC/DRVIT
RW	parameters are set by the user, they are not actually written to the
n vv	driver until the RW command is sent. Once this command is issued,
	communication to DMX- ETH will not be available for 2 seconds.
	Get the write operation status. After issuing the RW command and
R4	waiting 2 seconds, get the write operation status by using the R4
114	command. A return value of 1 signifies a successful write. All other
	return values signify a failed write operation.
DRVMS	Micro-stepping value of the driver [2-500].

Table 7.12

Driver configuration can also be done via standalone code. While reading or writing to the micro-step driver, StepNLoop and joystick control must be disabled. These control modes may interfere with the driver configuration.

7.18. Boot-up Sequence

DMX-ETH initial boot up takes approximately 5 seconds from the moment that power is supplied to the 2-pin connector.

7.18.1. Hard Reset detection

After initial boot up, the DMX-ETH will begin to look for a hard reset input sequence. If the first input pattern is not detected within 5 seconds, boot-up will skip to "Connection detection".

However, if the first input pattern is detected within 5 seconds, AND the full reset sequence is reached, the flash memory will be reset to factory defaults. Once the flash is reset, a power cycle needs to be performed in order to communicate via factory default settings. See section 7.21 for details.

7.18.2. Connection detection

If the hard reset input sequence is not detected, the device begins to look for an Ethernet connection. If an Ethernet connection is not detected within 7 seconds, the controller automatically times out and goes to the *Connection Time-out*

State. On the other hand, if, a connection is detected within the 7 second time frame, the controller will go to *Full Connection State* at the time of detection.

Note: During connection detection, the term "Ethernet connection" does not mean that a socket connection has been established. Instead, it means that the device is connected to an enabled / active Ethernet network / PC.

- **Connection Time-out State:** The controller could not detect an Ethernet connection in the allowable time frame. In this case, any standalone program that is set to run on boot-up will begin execution. Note that once this state is entered, it will no longer be possible to communicate with the controller via Ethernet. To communicate via Ethernet, a power cycle must be performed to restart the boot-up sequence.
- **Full Connection State:** The controller found an Ethernet connection in the allowable time frame. In this case, communication established by opening a TCP/IP socket connection. Note that it is possible to close and re-open the connection multiple times. Any stand-alone program that is set to run on boot-up will also begin execution.

7.19. Hard Reset (Flash Memory)

DMX-ETH comes with the ability to reset all the flash parameters to factory default settings. This is especially useful if the user has forgotten the device IP.

Hard reset is done by triggering the +LIM/-LIM/HOME/DI1/DI2 digital inputs in a particular sequence on boot up (*See Boot-up Sequence* section). There are a total of 7 steps that must be met in sequence. Each step has an input pattern that must be met before moving on to the next step. See chart below:

Step Condition	+LIM	-LIM	HOME	DI1	DI2
1	ON	ON	OFF	OFF	ON
2	OFF	ON	OFF	OFF	ON
3	ON	ON	OFF	OFF	ON
4	ON	ON	ON	OFF	ON
5	ON	ON	OFF	OFF	ON
6	ON	ON	OFF	OFF	OFF
7	ON	ON	OFF	OFF	ON

Notes:

ON: signal is pulled to GND of opto-supply (regardless of polarity setting)

Table 7.13

- OFF: signal is not pulled to GND of opto-supply (regardless of polarity setting)

- For each condition, only one signal needs to change state. This signal is in bold

At each step, the enable/disable state of the motor will toggle. This is a tool to help signal to the user when to create the next step condition. See the chart below for the motor enable status during a hard reset:

Step Condition	Pre-trigger LED status	Pre-trigger LED status
1	Disabled	Enabled
2	Enabled	Disabled
3	Disabled	Enabled
4	Enabled	Disabled
5	Disabled	Enabled
6	Enabled	Disabled
7	Disabled	Enabled

The controller will poll for the input pattern at each step for up to 10 sec. If the condition is not reached within the allotted 10 sec, the controller will stop looking for the hard reset sequence and continue its normal boot-up sequence (*See Boot-up Sequence* section). The motor will start as disabled.

However, once the condition for a step is met, it will immediately start looking for the next sequence (i.e. it is not necessary to wait the full 10 sec to trigger the next step).

If the DMX-ETH successfully triggers steps 1-7 in sequence, the flash is reset to factory default. At the end of the flash reset operation, the motor will stay enabled.

Once the flash is reset, a power cycle needs to be performed in order to communicate via factory default settings.

7.20. Storing to Flash

The following items are stored to flash. To store to flash, use the **STORE** command.

ASCII Command	Description
DOBOOT	DO configuration at boot-up
DRVMS, DRVRC, DRVIC, DRVIT	Micro-step driver settings
EDEC	Unique deceleration enable

EOBOOT	EO configuration at boot-up
HCA	Home correction amount
IERR	Ignore limit error enable
IP	IP address
LCA	Limit correction amount
POL	Polarity settings
RZ	Return to zero position after homing
SL, SLR, SLE, SLT, SLA	StepNLoop parameters
SLOAD	Standalone program run on boot-up parameter
TOC	Time-out counter reset value
V51-V100	Note that on boot-up, V0-V49 are reset to value 0

Table 7.15

When a standalone program is downloaded, the program is immediately written to flash memory.

7.21. Default Settings

Following are the factory default settings when then unit is shipped from the factory.

Command	Parameter Description	Value
DRVIC	Idle current	1000 mA
DRVRC	Run current	2400 mA
DRVIT	Idle time	500 mSec
DRVMS	Microstep	50
DOBOOT	Digital output boot-up state	0
EDEC	Enable deceleration	0
EOBOOT	Enable output boot-up state	0
HCA	Home correction amount	1000
IERR	Ignore error state	Disabled
IP	IP Address	192.168.1.250
LCA	Limit correction amount	1000
POL (bit 1)	Direction polarity	Active Low (CCW)
POL (bit 4)	Limit polarity	Active Low
POL (bit 5)	Home polarity	Active Low
POL (bit 6)	Latch polarity	Active Low
POL (bit 7)	Z-channel index	Active Low
POL (bit 8,9)	Encoder decoding	Active Low

POL (bit 10)	Digital output polarity	Active Low
POL (bit 12)	Digital input polarity	Active Low
POL (bit 12)	Jump to line 0 on error	Disabled
POL (bit 13)	Motor enable	Active Low
RZ	Return to home position	Disabled
SL	StepNLoop enable	Disabled
SLR	StepNloop ratio	1.000
SLA	StepNLoop maximum attempt	5
SLE	StepNLoop error range	1000
SLT	StepNLoop tolerance range	10
SLOAD	Run program(s) on power up	0
TOC	Time-out counter value (Watch-dog)	0
V1-V100	Volatile and non-volatile variables	0

Table 7.16

8. Software Overview

The DMX-ETH has a Windows compatible software that allows for Ethernet communication. Standalone programming, along with all other available features of the DMX-ETH, will be accessible through the software. It can be downloaded from the Arcus Technology website.

Startup the DMX-ETH GUI program and you will see following screen in figure 8.0.

🖬 DMX-ETH-17/23 GUI 🗕 🗖 🗙
DMX-ETH Software Version 320
Device IP: 192.168.1.250 Socket Port: 5001 Ethernet
Exit

Once the correct IP settings have been determined, the Ethernet button can be used to establish Ethernet communication and will open to the Main Control Screen.

8.1. Main Control Screen

DMX-ETH-17/23						×
Status Position 0 Encoder 0 Speed 0 Delta 0	Control Position 1000 High Speed 1000 Low Speed 100 Accel 300	DATUM ABS	HOME-	HOME+	Program Control Status Idle Index 0 X-Thread Index Idle Index Idle Index Idle Idle <	? About
Status IDLE C StepNLoop IDLE C	Decel 300 Enable		ZH∙	ZH+	Text Program Total Lines:	Compile
Mode ABS S-curve O +L H L	SCV TRAP TX ABS INC SE SP	STOP ISTOP	¢ ņ Z·	Z+		
On-The-Fly-Speed SSPD Mode 0 ▼ Set S	peed 1000 Accel 1000	Set Acc + Sp	eed	ß		
DIO Status Product Info Setup						Upload
DI1 O DO1 O Enable DI2 DO2 C Latch Inpu		are: V227BL		V Variables		View
A2-DRV Latched P Latch Enc Alarm Status	0		S ave	New	Clear Code Space	Close

Figure 8.1

8.1.1. Status

– Status ––		
Position	0	B
Encoder	0	ΒÔ
Speed	0	_
Delta	0	
Status	IDLE	С
StepNLoop	IDLE	С
Mode	ABS	
S-curve	0	
+L ()	H) I	-0

- 1. **Pulse Counter** displays the current pulse position counter. When StepNLoop is enabled, this displays the Target position.
- 2. Encoder Counter displays the current encoder position counter.
- **3. Delta Counter** valid only for StepNLoop. Displays the difference between the pulse position and the encoder position.
- **4. Speed** displays the current pulse speed output rate. Value is in pulses/second. While the controller is in StepNLoop mode, this value shows encoder counts/second.

- 5. Motion Status displays current motion status by displaying one of the following status:
 - IDLE: motor is not moving
 - ACCEL: motion is in acceleration
 - DECEL: motion is in deceleration
 - CONST: motion is in constant speed
 - -LIM ERR: minus limit error
 - +LIM ERR: plus limit error
- 6. StepNLoop Status valid only when StepNLoop is enabled and displays current StepNLoop status by displaying one of the following:
 - NA: StepLNoop is disabled
 - IDLE: motor is not moving
 - MOVING: target move is in progress
 - JOGGING: jog move is in progress
 - HOMING: homing is in progress
 - LHOMING: limit homing in progress
 - Z-HOMING: homing using Z-index channel in progress
 - ERR-STALL: StepNLoop has stalled
 - ERR-LIM: plus/minus limit error
- 7. Move Mode displays current move mode.
 - ABS: all the move commands by X[pos] command will be absolute moves
 - INC: all the move commands by X[pos] command will be increment moves.
- 8. S-curve Status Displays whether the moves are in trapezoidal or S-curve acceleration.
- 9. Limit/Home Input Status Limit and Home input status.

8.1.2. Control

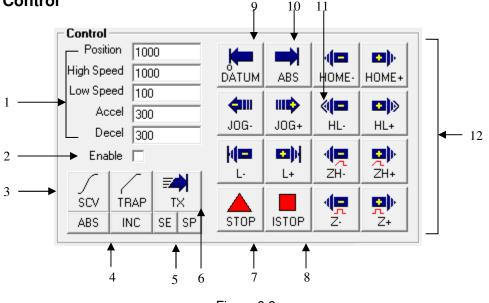
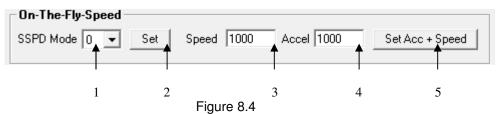


Figure 8.3

1. Target Position/Speed/Accel

- Position: use this to set the target position. For normal open loop mode, this position is the pulse position and when StepNLoop is enabled this target position is in encoder position.
- High/Low Speed: use this to set the speed of the move. For normal open loop mode, this value is in pulses/second and when StepNLoop is enabled this value is in encoder counts/second.
- Accel: acceleration value in milliseconds.
- Decel: deceleration value in milliseconds.
- 2. Enable Driver Power use this button to enable and disable the power to the microstep driver.
- **3.** Select Acceleration Mode use these buttons to select trapezoidal or S-curve acceleration mode.
- 4. Select Move Mode use these buttons to select absolute or incremental move mode.
- 5. Set Position use these buttons to set the encoder or pulse position to "Position" value.
- 6. On-the-fly target change Change the target position on-the-fly.
- 7. Ramp Stop use this button to stop the motion with deceleration.
- 8. Immediate Stop use this button to stop the motion immediately. We recommend that ramp stop be used whenever possible to reduce the impact to the motor and the system.
- **9.** Move back to zero use this to move the motor to the zero target position. When in absolute mode, the axis will move to zero position (zero encoder position when in StepNLoop and zero pulse position when in open loop).
- **10. Perform Absolute Move** use this to move the motor to the target position.

When in absolute mode, the axis will move to the absolute target position.


When in incremental mode, the axis will move incrementally.

- **11.Jogging** jog motor in either the positive or negative direction
- **12. Perform Homing** Five different homing routines are available:
 - HOME: homing is done using only the home switch.
 - HL: homing is done using only the home switch at high speed and low speed.
 - L: homing is done using the limit switch.
 - ZH: homing is done using the home switch first and then the Z index channel of the encoder.
 - Z: homing is done only using the Z index channel of the encoder.

8.1.3. On-The-Fly Speed Change

Set the speed on the fly. On-the-fly speed change feature can only be used if the controller is already in motion.

- 1. On-the-fly speed mode Before setting the controller into motion, set the SSPDM parameter. To see which value to use, see the on-the-fly speed change section.
- 2. Set SSPDM Set the SSPDM parameter. Note that if an on-the-fly speed change operation is to be used, this parameter must be set before the controller starts motion.
- **3. Desired Speed** Once the "Set Speed" button is clicked, the speed will change on-the-fly to the desired speed.
- **4. Desired Acc/Dec** The acceleration/deceleration use for the on-thefly speed change operation.
- 5. Set Accel + Speed Start the on-the-fly speed operation.

8.1.4. DIO Status

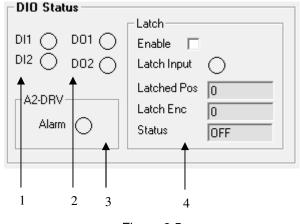


Figure 8.5

- 1. **Digital Input Status** digital inputs can be used as general purpose use.
- Digital Out Status and Control digital outs are used for StepNLoop or general purpose output use. The outputs can be triggered by clicking on the circle.
- 3. **Alarm** Status of the DMX-A2-DRV driver alarm output signal is displayed.
- 4. Latch encoder and pulse positions can be captured/latched with an input trigger.

8.1.5. Product Info

Product Info		
Product ID:	DMX-SERIES-ETH	
Firmware:	V227BL	
Device IP:	192.168.1.250	

Displays the product ID as well as the firmware version.

8.1.6. Terminal

Terminal	×
	~
IP: 192.168.1.250 Cmd:	~
Save Close	

Terminal dialog box allows manual testing of the commands from a terminal screen as shown in Figure 8.8

8.1.7. Setup

DMX-ETH Setup				
Polarity/Setup	Communication Setup			
Dir ⊂ High ⊙ Home ⊂ High ⊙	192.168.1.250			
Limit CHigh (• Latch CHigh (•	Low Time-out Counter 0 ms			
ZIndex C High Encoder C 4× C 2× Output C High ⊙	Low Enable Cow Max Attempt 5			
Input OHigh ⊙ SAErr OHigh ⊙ Enable OHigh ⊙	Low Error Range 100			
	Dir O Enable Decel Auto Run 0 Auto Run 1 A Temp 0 I ERR			
Open Save	Upload Down Store Close			

- 1. Polarity Setup the following polarity parameters can be configured:
 - Dir: direction of the motion (clockwise or counter-clockwise)
 - Home: home input polarity
 - Limit: limit input polarity
 - Latch: latch input polarity
 - Z-Index: Encoder Z index channel polarity
 - Encoder: encoder multiplication factor can be configured as 1X, 2X, or 4X
 - Output: digital output polarity

- Input: digital input polarity
- SA Err: standalone error jump line:
- Low: jump to previous line
- High: jump to line 0
- Enable: enable output polarity
- 2. Driver Setting The following driver settings can be configured:
 - Micro-step: 2 to 500 micro-steps
 - Run Current: 100mA to 3Amp
 - Idle Current: 100mA to 3Amp
 - Idle Time:1 to 100 centi-second (100 centi-second = 1 second)
- 3. Communication Setup
 - The IP address will determine the IP of the device.
 - Time-out counter is a watch-dog timer for communication (ms)
- StepNLoop Control Using the encoder input, StepNLoop control allows closed loop position verification and correction for the moves. See StepNLoop control section for details.

5. Misc Settings

- Enable Decel: Allow for unique deceleration and acceleration values
- Auto Run 0: Run standalone program 0 on boot-up
- Auto Run 1: Run standalone program 1 on boot-up
- RZ: Return to zero position after homing routines
- IERR: Ignore limit error
- EOBOOT: Configure enable output boot-up state
- DOBOOT: Configure digital output boot-up state
- LCA: Set limit correction amount
- HCA: Set home correction amount
- 6. **Open/Save** Configuration values can be saved to a file and read from a file.
- 7. Upload/Download Configuration values can be uploaded and downloaded.

Note that if the configuration values are changed, it needs to be downloaded to take effect.

8. Store – The downloaded parameters can be permanently stored on the non-volatile memory.

8.1.8. Standalone Program File Management

Figure 8.9

- 1. Open Open standalone program.
- 2. Save Save standalone program.
- 3. New Clear the standalone program editor

8.1.9. Standalone Program Editor

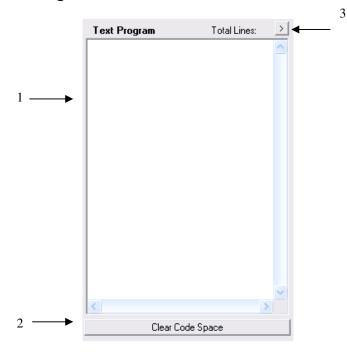


Figure 8.10

- **1.** Write the standalone program in the Program Editor.
- 2. Use this button to remove the current standalone program.
- **3.** Use this button to open a larger and easier to manage program editor.

8.1.10.Standalone Processing

Figure 8.11

- **1. Compile** Compile the standalone program.
- 2. Download Download the compiled program.
- **3.** Upload Upload the standalone program from the controller.
- 4. View View the low level compiled program.

8.1.11. Variable Status

•		Variables		×		
- Volatile Variables-		Volatile Variables				
V1 0	V26 0	V51 0	V76 0			
V2 0	V27 0	V52 0	V77 0			
V3 0	V28 0	V53 0	V78 0			
V4 0	V29 0	V54 0	V79 0			
V5 0	V30 0	V55 0	V80 0			
V6 0	V31 0	V56 0	V81 0			
V7 0	V32 0	V57 0	V82 0			
V8 0	V33 0	V58 0	V83 0			
V9 0	V34 0	V59 0	V84 0			
V10 0	V35 0	V60 0	V85 0			
V11 0	V36 0	V61 0	V86 0			
V12 0	V37 0	V62 0	V87 0			
V13 0	V38 0	V63 0	V88 0			
V14 0	V39 0	V64 0	V89 0			
V15 0	V40 0	V65 0	V90 0			
V16 0	V41 0	V66 0	V91 0			
V17 0	V42 0	V67 0	V92 0			
V18 0	V43 0	V68 0	V93 0			
V19 0	V44 0	V69 0	V94 0			
V20 0	V45 0	V70 0	V95 0			
V21 0	V46 0	V71 0	V96 0			
V22 0	V47 0	V72 0	V97 0			
V23 0	V48 0	V73 0	V98 0			
V24 0	V49 0	V74 0	V99 0			
V25 0	V50 0	V75 0	V100 0			
	Close Command:					

Figure 8.12

View the status of variables 1-100. Note that this window is read-only. A command line is available to send commands to the DMX-ETH.

8.1.12. Program Control

Program Co	ntrol —		
Status Idle	Inde	× 0	X-Thread
Run	Stop	Pause	Cont

- **1. Program Status** program status shows here. Following are possible program status: Idle, Running, Errored and Paused.
- 2. Index –downloaded program is in the form of low-level code. Each line of the low level code has a line number which shows here.
- **3. Run** runs the program.
- 4. Stop stops the program.
- 5. Pause pauses the program.
- 6. Continue resumes a paused program.
- **7. X-Thread** open the Program Control for standalone multi-thread operation.

9. ASCII Language Specification

Important Note: All the commands described in this section are interactive commands and are not analogous to standalone commands. Refer to section 10 for details regarding standalone commands.

DMX-ETH language is case sensitive. All command should be in capital letters. Invalid command is returned "?". Always check for proper reply when command is sent.

Command	Description	Return
ABORT	Immediately stops the motor if in motion. For decelerate stop, use STOP command. This command can also be used to clear a StepNLoop error.	ок
ABS	Set move mode to absolute	OK
ACC	Returns current acceleration value in milliseconds.	Milli-seconds
ACC=[Value]	Sets acceleration value in milliseconds. Example: ACC=300	ОК
ALM	Get DMX-A2-DRV alarm output status	0,1
CLR	Clears limit error as well as StepNLoop error	OK
DEC	Get deceleration value in milliseconds. Only used if EDEC=1	Milli-seconds
DEC=[Value]	Set deceleration value in milliseconds. Only used if EDEC=1	ОК
DI	Return status of digital inputs	See Table 7.1
DI[1-2]	Get individual bit status of digital inputs	0,1
DO	Return status of digital outputs	2-bit number
DO=[Value]	Set digital output 2 bit number.	OK
DO[1-2]	Get individual bit status of digital outputs	See Table 7.2
DO[1-2]=[Value]	Set individual bit status of digital outputs	OK
DOBOOT	Get DO boot-up state	See Table 7.2
DOBOOT=[Value]	Set DO boot-up state	OK
DX	Returns the delta value during StepNLoop control	28-bit number
DRVDP	Get driver direction polarity	0,1
DRVDP=[Value]	Set driver direction polarity	ОК
DRVIC	Get driver idle current setting. Value is only valid after reading parameters using the "RR" command.	[100 – 3000] mA (peak current)
DRVIC=[Value]	Set driver idle current setting. Value is only written to the driver after using the "RW" command.	ОК
DRVIT	Get driver idle time setting. Value is only valid after reading parameters using the "RR" command.	[1-100] centi-sec
DRVIT=[Value]	Set driver idle time setting. Value is only written to the driver after using the "RW" command.	ОК
DRVMS	Get driver micro-step setting. Value is only valid after reading parameters using the "RR" command.	[2-500] micro- stepping
DRVMS=[Value]	Set driver miero aten esting. Value is only written to	
DRVRC	Get driver run current setting. Value is only valid after reading parameters using the "RR" command.	[1-100] centi-sec
DRVRC=[Value]	Set driver run current setting. Value is only written to	OK

9.1. ASCII Command Set

	the driver after using the "RW" command.	
EDEC	Get unique deceleration enable	0 or 1
EDEC=[Value]	Set unique deceleration enable	OK
EO	Returns driver power enable.	1 – Motor power enabled 0 – Motor power disabled
EO=[0 or 1]	Enables (1) or disable (0) motor power	OK
EOBOOT	Get EO boot-up state	0 or 1
EOBOOT=[Value]	Set EO boot-up state	OK
EX	Returns current encoder counter value	28-bit number
EX=[Value]	Sets the current encoder counter value	OK
GS[0-31]	Call a subroutine that has been previously stored to flash memory	ОК
HSPD	Returns High Speed Setting	PPS
HSPD=[Value]	Sets High Speed.	OK
H+	Homes the motor in positive direction	OK
H-	Homes the motor in negative direction	OK
HCA	Returns the home correction amount	28-bit number
HCA=[Value]	Sets the home correction amount	OK
HL+	Homes the motor in positive direction (with with low speed)	ОК
HL-	Homes the motor in negative direction (with low speed)	OK
IERR	Get ignore limit error enable	0 or 1
IERR=[Value]	Set ignore limit error enable	OK
ID	Returns product ID	DMX-SERIES- ETH
INC	Set move mode to incremental	OK
J+	Jogs the motor in positive direction	OK
J-	Jogs the motor in negative direction	OK
L+	Limit homing in positive direction	OK
L-	Limit homing in negative direction	OK
LCA	Returns the limit correction amount	28-bit number
LCA=[Value]	Sets the limit correction amount	OK
LSPD	Returns Low Speed Setting	PPS
LSPD=[Value]	Sets Low Speed	OK
LT=[0 or 1]	Enable or disable position latch feature	OK
LTE	Returns latched encoder position	28-bit number
LTP	Returns latched pulse position	28-bit number
LTS	Returns latch status	See Table 7.3
MM	Get move mode status	0 – Absolute move mode 1 – Incremental move mode
MST	Returns motor status	See Table 7.0
POL	Returns current polarity	See Table 7.4
POL=[value]	Sets polarity	OK
PS	Returns current pulse speed	PPS
PX	Returns current position value	28-bit number
PX=[value]	Sets the current position value	OK
R2	Get driver read operation status	[1] – Driver read successful [2-7] – Driver read failure

R4	Get driver write operation status	[1] – Driver write successful [2-7] – Driver write failure
RR	Read driver parameters	OK
RZ	Get return zero enable. Used during homing	0 or 1
RZ=[0 or 1]	Set return zero enable. Used during homing	OK
RW	Write driver parameters	OK
SASTAT[0,1]	Get standalone program status 0 – Stopped 1 – Running 2 – Paused 4 – In Error	0-4
SA[LineNumber]	Get standalone line LineNumber: [0,7649]	
SA[LineNumber]=[Value]	Set standalone line LineNumber: [0,7649]	
SCV	Returns the s-curve control	0 or 1
SCV=[0 or 1]	Enable or disable s-curve. If disabled, trapezoidal acceleration/ deceleration will be used.	ОК
SL	Returns StepNLoop enable status	0 – StepNLoop Off 1 – StepNLoop On
SL=[0 or 1]	Enable or disable StepNLoop Control	OK
SLA	Returns maximum number of StepNLoop control attempt	28-bit number
SLA=[value]	Sets maximum number of StepNLoop control attempt	ОК
SLE	Returns StepNLoop correction range value	28-bit number
SLE=[value]	Sets StepNLoop correction range value	OK
SLR	Returns StepNLoop ratio value	[0.001 – 999.999]
SLR=[factor]	Sets StepNLoop ratio value. Must be in the range [0.001 – 999.999]	OK
SLS	Returns current status of StepNLoop control	See Table 7.6
SLT	Returns StepNLoop tolerance value	32-bit
SLT=[value]	Sets StepNLoop tolerance value	OK
SLOAD	Returns RunOnBoot parameter	See Table 7.11
		See Table 7.11
SLOAD=[0 or 1]	Set RunOnBoot parameter	
SPC[0,1]	Get program counter for standalone program	[0-7649]
SR[0,1]=[Value]	Control standalone program: 0 – Stop standalone program 1 – Run standalone program 2 – Pause standalone program 3 – Continue standalone program	ОК
SSPD[value]	On-the-fly speed change. In order to use this command, S-curve control must be disabled. Use SCV command to enable and disable s-curve acceleration/ deceleration control. Note that an "=" sign is not used for this command.	ОК
SSPDM	Return on-the-fly speed change mode	[0-9]
SSPDM=[value]	Set on-the-fly speed change mode	OK
STOP	Stops the motor using deceleration if in motion.	OK
STORE	Store settings to flash	OK
T[value]	On-the-fly target change	OK
TOC	Get time-out counter (ms)	32-bit number
TOC=[value]	Set time-out counter (ms)	OK

V[1-100]	Read variables 1-100	28-bit number
V[1-100]=[value]	Set variables 1-100	OK
VER	Get firmware version	Vxxx
X[value]	Moves the motor to absolute position value using the HSPD, LSPD, and ACC values.	ОК
Z+	Homes the motor in positive direction using the Z index encoder channel ONLY.	ОК
Z-	Homes the motor in negative direction using the Z index encoder channel ONLY.	ОК
ZH+	Homes the motor in positive direction using the home switch and then Z index encoder channel.	ОК
ZH-	Homes the motor in negative direction using the home switch and then Z index encoder channel.	ОК

Table 9.0

9.2. Error Codes

If an ASCII command cannot be processed by the DMX-ETH, the controller will reply with an error code. See below for possible error responses:

Error Code	Description
?[Command]	The ASCII command is not understood.
?ABS/INC is not in operation	T[] command is invalid because a target position move is not in operation.
?Index out of Range	The index for the command sent to the controller is not valid.
?Moving	A move or position change command is sent while the controller is outputting pulses.
?SCV ON	Cannot perform SSPD move because s-curve is enabled.
?Speed out of range	SSPD move parameter is out of the range of the SSPDM speed window.
?State Error	A move command is issued while the controller is in error state.
?Sub not Initialized	Call to a subroutine using the GS command is not valid because the specified subroutine has not been defined.

Table 9.1

10. Standalone Programming Specification Important Note: All the commands described in this section are standalone language commands and are not analogous to ASCII commands. Refer to section 9 for details regarding ASCII commands.

Command	R/W	Description	Example
. ,	-	Comment notation. Comments out any text following ; in the same line.	;This is a comment
ABORTX	W	Immediately stop all motion.	ABORTX
ABS	W	Set the move mode to absolute	ABS
		mode.	X1000 ;move to position 1000
ACC	R/W	Set/get the acceleration setting. Unit	ACC=500
		is in milliseconds.	ACC=V1
DEC	R/W	Set/get the deceleration setting.	DEC=300
		Unit is in milliseconds.	DEC=V1
DELAY=[Value]	W	Set a delay in milliseconds. Assigned value is a 32-bit unsigned integer.	DELAY=1000 ;1 second
DI	R	Return status of digital inputs. See	IF DI=0
		Table 7.1 for bitwise assignment.	DO=1 ;Turn on DO1 ENDIF
DI[1-2]	R	Get individual bit status of digital	IF DI1=0
		inputs. Will return [0,1]. See Table	DO=1 ;Turn on DO1
		7.1 for bitwise assignment.	ENDIF
DO	R/W	Set/get digital output status. See Table 7.2 for bitwise assignment.	DO=2 ;Turn on DO2
DO[1-2]	R/W	Set/get individual bit status of digital	DO2=1 ;Turn on DO2
		outputs. Range for the bit assigned	
		digital outputs is [0,1].	
DRVIC	W	Sets the driver idle current	DRVIC=500 ;Set idle current to 500mA
		parameter. Units are in mA.	
DRVIT	W	Sets the driver idle time parameter. Units are in cent-sec.	DRVIT=1 ;Idle time set to 1 cent-sec
DRVMS	W	Sets the driver micro-step	DRVMS=100 ;Set micro-step to 100
		parameter.	
DRVRC	W	Sets the driver run current	DRVRC=1000 ;Set run current to 1000mA
		parameter. Units are in mA.	
ECLEARX	W	Clear any motor status errors. See	ECLEARX
		Section 7.16.5 for types of errors.	
EO	R/W	Set/get the enable output status.	EO=1 ;Enable the motor
EX	R/W	Set/get the current encoder position.	EX=0 ; Set the encoder position to 0
GOSUB [0-31]	-	Call a subroutine that has been	GOSUB 0
		previously stored to flash memory.	END
HLHOMEX[+/-]	W	Home the motor using the home	HLHOMEX+ ;positive home
		input at low and high speeds in the	WAITX ;wait for home move
		specified direction. See section	
		7.9.3 for details	
HOMEX[+/-]	W	Home the motor using the home	HOMEX- ;negative home
		input at high speed in the specified	WAITX ;wait for home move
		direction. See section 7.9.1 for details.	
		UCIAIIS.	

10.1. Standalone Command Set

HSPD	R/W	Set/get the high speed setting. Unit	HSPD=1000
13PD	Π/ ٧٧		HSPD=1000 HSPD=V1
IF	-	is in pulses/second. Perform a standard	IF DI1=0
ELSEIF	-	IF/ELSEIF/ELSE conditional. Any	DO=1 ;Turn on DO1
ELSE		command with read ability can be	ELSEIF DI2=0
ENDIF		used in a conditional	DO=2; Turn on DO2
ENDIF		used in a conditional	ELSE
		ENDIE abould be used to along off	
		ENDIF should be used to close off	DO=0; Turn off DO
		an IF statement.	ENDIF
		Conditions [=, >, <, >=, <=, !=] are	
	147	available	
INC	W	Set the move mode to incremental	INC
		mode.	X1000 ;increment by 1000
JOGX[+/-]	W	Move the motor indefinitely in the	JOGX+
		specified direction.	JOGX-
LHOMEX[+/-]	W	Home the motor using the limit	LHOMEX+ ;positive home
		inputs in the specified directions.	WAITX
		See section 7.9.4 for details.	
LSPD	R/W	Set/get the low speed setting. Units	LSPD=100
		are in pulses/second.	LSPD=V3
LTX	W	Set the latch enable.	LTX=1 ;Enable latch
LTEX	R	Get the latch encoder value.	V3=LTEX ;Get latch encoder value
LTPX	R	Get the latch position value.	V4=LTPX ;Get latch position value
LTSX	R	Get the latch status.	V2=LTSX ;Get the latch status
MSTX	R	Get the current motor status of the	V1=MSTX ;Set V1 to MST
		motor. See Table 7.0 for motor	
		status assignment.	
PRG [0-1]	-	Used to define the beginning and	PRG 0
END		end of a main program. The DMX-	;main program
		ETH can have up to two main	END
		programs.	
PS	R	Get the current pulse speed.	V1=PS ;Sets variable 1 to pulse speed
PX	R/W	Set/get the current motor position.	PX=1000 ;Set to 1000
	,		V1=PX ;Read current position
RW	w	Start driver write operation. Note	RW
		that after executing RW, wait 2	
		seconds	
		before any other operation is	
		executing (using DELAY=2000).	
RWSTAT	R	Get the driver write operation status.	V1=RWSTAT
SCVX	W	Set the s-curve enable.	SCVX=1 ;Enable s-curve
SLX	W	Get the StepNLoop status.	SL=1 ;Enable StepNLoop
SLSX	R	Get the StepNLoop status.	V1=SLSX ;Set V1 to the SNL status
SSPDX	W	Set on-the-fly speed change for an	SSPDX=3000 ;Change speed 3000 PPS
33507	vv	individual axis. Range is from 1 to	Sor DA=3000 , Ghange speed 3000 PPS
SSDMAX	14/	6,000,000 PPS.	SCODMY 1 Set around made
SSPDMX	W	Set individual on-the-fly speed	SSPDMX=1 ;Set speed mode
	14/	change mode. Range is from 0 to 9.	
SR[0,1]=[Value]	W	Set the standalone control for the	SR0=0 ;Turn off program 0
		specified program. See Section	
07001		7.16.2.	
STOPX	W	7.16.2.Stop all motion using a decelerated	STOPX
STOPX	W -	7.16.2.	STOPX

SUB [0-31]	-	Defines the beginning of a	
ENDSUB	-	subroutine.	SUB 1
ENDSUB		ENDSUB should be used to define	DO=4
			ENDSUB
TOO	14/	the end of the subroutine.	
TOC	W	Sets the communication time-out	TOC=1000 ;1 SECOND TIME-OUT
		parameter. Units are in	
		milliseconds.	
V[1-100]	R/W	Set/get standalone variables.	V1=12345 ;Set V1 to 12345
			V2=V1+1;Set V2 to V1 + 1
		The following operations are	V3=DI ;Set V3 to DI
		available:	
		[+] Addition	V4=DO ;SET V4 TO DO
		[-] Subtraction	V5=~EO ;SET V5 TO NOT EO
		[*] Multiplication	
		[/] Division	
		[%] Modulus	
		[>>] Bit shift right	
		[<<] Bit shift left	
		[&] Bitwise AND	
		[]] Bitwise OR	
		[~] Bitwise NOT	
WAITX	W	Wait for current motion to complete	
		before processing the next line.	X1000 ;MOVE TO POSITION 1000
		service proceeding the next mer	WAITX ;wait for move
WHILE	-	Perform a standard WHILE loop	
ENDWHILE		within the standalone program.	WHILE 1=1 ;FOREVER LOOP
		ENDWHILE should be used to close	DO=1 ;Turn on DO1
		off a WHILE loop.	DO=0 ;Turn off DO1
			ENDWHILE
		Conditions [=, >, <, >=, <=, !=] are	
		available.	
V[popition]	14/		
X[position]	W	If in absolute mode, move the motor	X1000
		to [position]. If in incremental mode,	
		move the motor to [current position]	
		+ [position].	
ZHOMEX[+/-]	W	Perform Z-homing using the current	711004574
		high speed, low speed, and	ZHOMEX+
		acceleration. See section 7.9.2 for	ZHOMEX-
		details.	
ZOMEX[+/-]	W	Perform Zoming (homing only using	
	vv		ZOMEX+
		Z-index) using the current high	ZOMEX-
		speed, low speed, and acceleration.	
		See section 7.9.5 for details.	

Table 10.0

10.2. Example Standalone Programs

10.2.1. Standalone Example Program 1 – Single Thread

Task: Set the high speed and low speed and move the motor to 1000 and back to 0.

HSPD=20000	;* Set the high speed to 20000 pulses/sec
LSPD=1000	;* Set the low speed to 1000 pulses/sec
ACC=300	;* Set the acceleration to 300 msec
EO=1	;* Enable the motor power
X1000	;* Move to 1000
WAITX	;* Wait for X-axis move to complete
X0	;* Move to zero
END	;* End of the program

10.2.2. Standalone Example Program 2 – Single Thread

Task: Move the motor back and forth indefinitely between position 1000 and 0.

HSPD=20000	;* Set the high speed to 20000 pulses/sec
LSPD=1000	;* Set the low speed to 1000 pulses/sec
ACC=300	;* Set the acceleration to 300 msec
EO=1	;* Enable the motor power
WHILE 1=1	;* Forever loop
X1000	;* Move to 1000
WAITX	;* Wait for X-axis move to complete
X0	;* Move to zero
ENDWHILE	;* Go back to WHILE statement
END	

10.2.3. Standalone Example Program 3 – Single Thread

Task: Move the motor back and forth 10 times between position 1000 and 0.

HSPD=20000 LSPD=1000 ACC=300	;* Set the high speed to 20000 pulses/sec ;* Set the low speed to 1000 pulses/sec ;* Set the acceleration to 300 msec
EO=1	;* Enable the motor power
V1=0	;* Set variable 1 to value 0
WHILE V1<10	;* Loop while variable 1 is less than 10
X1000	;* Move to 1000
WAITX	* Wait for X-axis move to complete
XO	;* Move to zero
V1=V1+1	;* Increment variable 1
ENDWHILE	* Go back to WHILE statement
END	,

10.2.4. Standalone Example Program 4 – Single Thread

Task: Move the motor back and forth between position 1000 and 0 only if the digital input 1 is turned on.

HSPD=20000	;* Set the high speed to 20000 pulses/sec
LSPD=1000	;* Set the low speed to 1000 pulses/sec
ACC=300	;* Set the acceleration to 300 msec
EO=1	;* Enable the motor power
WHILE 1=1	;* Forever loop
IF DI1=1	;* If digital input 1 is on, execute the statements
X1000	;* Move to 1000
WAITX	;* Wait for X-axis move to complete
X0	;* Move to zero
ENDIF	
ENDWHILE ;* Go END	back to WHILE statement

10.2.5. Standalone Example Program 5 – Single Thread

Task: Using a subroutine, increment the motor by 1000 whenever the DI1 rising edge is detected.

HSPD=20000 LSPD=1000 ACC=300 EO=1 V1=0 WHILE 1=1 IF DI1=1 GOSUB 1 ENDIF ENDWHILE END	;* Set the high speed to 20000 pulses/sec ;* Set the low speed to 1000 pulses/sec ;* Set the acceleration to 300 msec ;* Enable the motor power ;* Set variable 1 to zero ;* Forever loop ;* If digital input 1 is on, execute the statements ;* Jump to subroutine 1 ;* Go back to WHILE statement
SUB 1 XV1 V1=V1+1000 WHILE DI1=1 ENDWHILE ENDSUB	;* Move to V1 target position ;* Increment V1 by 1000 ;* Wait until the DI1 is turned off so that ;* 1000 increment is not continuously done

10.2.6. Standalone Example Program 6 – Single Thread

Task: If digital input 1 is on, move to position 1000. If digital input 2 is on, move to position 2000. If digital input 3 is on, move to 3000. If digital input 5 is on, home the motor in negative direction. Use digital output 1 to indicate that the motor is moving or not moving.

$ \begin{array}{l} \text{HSPD=20000} \\ \text{LSPD=1000} \\ \text{ACC=300} \\ \text{EO=1} \\ \text{WHILE 1=1} \\ \text{IF DI1=1} \\ \text{X1000} \\ \text{ELSEIF DI2=1} \\ \text{X2000} \\ \text{ELSEIF DI3=1} \\ \text{X3000} \\ \text{ELSEIF DI5=1} \\ \text{HOMEX-} \\ \text{ENDIF} \\ \text{V1=MSTX} \\ \text{V2=V1&7} \\ \text{IF V2!=0} \\ \end{array} $;* If digital input 2 is on ;* Move to 2000 ;* If digital input 3 is on ;* Move to 3000 ;* If digital input 5 is on
IF V2!=0 DO1=1 ELSE DO1=0 ENDIF ENDWHILE END	;* Go back to WHILE statement

10.2.7. Standalone Example Program 7 – Multi Thread

Task: Program 0 will continuously move the motor between positions 0 and 1000. Simultaneously, program 1 will control the status of program 0 using digital inputs.

PRG 0	;* Start of Program 0
HSPD=20000	;* Set high speed to 20000 pulses/sec
LSPD=500	;* Set low speed to 500 pulses/sec
ACC=500	;* Set acceleration to 500ms
WHILE 1=1	;* Forever loop
X0	;* Move to position 0
WAITX	;* Wait for the move to complete
X1000	;* Move to position 1000
WAITX	;* Wait for the move to complete
ENDWHILE	;* Go back to WHILE statement
END	;* End Program 0
PRG 1	;* Start of Program 1
WHILE 1=1	;* Forever loop
IF DI1=1	;* If digital input 1 is triggered
ABORTX	;* Stop movement
SR0=0	;* Stop Program 1
ELSE	;* If digital input 1 is not triggered
SR0=1	;* Run Program 1
ENDIF	;* End if statements
ENDWHILE	;* Go back to WHILE statement
END	;* End Program 1

10.2.8. Standalone Example Program 8 – Multi Thread

Task: Program 0 will continuously move the motor between positions 0 and 1000. Simultaneously, program 1 will monitor the communication time-out parameter and triggers digital output 1 if a time-out occurs. Program 1 will also stop all motion, disable program 0 and then re-enable it after a delay of 3 seconds when the error occurs.

PRG 0	;* Start of Program 0
HSPD=1000	;* Set high speed to 1000 pulses/sec
LSPD=500	;* Set low speed to 500 pulses/sec
ACC=500	;* Set acceleration to 500ms
TOC=5000	;* Set time-out counter alarm to 5 seconds
EO=1	;* Enable motor
WHILE 1=1	;* Forever loop
X0	;* Move to position 0
WAITX	;* Wait for the move to complete
X1000	;* Move to position 1000
WAITX	;* Wait for the move to complete
ENDWHILE	;* Go back to WHILE statement
END	;* End Program 0
DO=0	;* If time-out counter alarm is on ;* Stop program 0 ;* Abort the motor ;* Set DO=0 00;* Delay 3 seconds
ENDWHILE	;* Go back to WHILE statement
END	;* End Program 1

A: Speed Settings

HSPD value [PPS] †	Speed Window [SSPDM]	Min. LSPD value	Min. ACC [ms]	δ	Max ACC setting [ms]
1 - 16 K	0,1	10	2	500	
16K - 30 K	2	10	1	1 K	
30K - 80 K	3	15	1	2 K	
80K - 160 K	4	25	1	4 K	
160K - 300 K	5	50	1	8 K	((HSPD – LSPD) / δ) × 1000
300K - 800 K	6	100	1	18 K	
800K - 1 M	7	200	1	39 K	

Table A.0

†If StepNLoop is enabled, the [HSPD range] values needs to be transposed from PPS (pulse/sec) to EPS (encoder counts/sec) using the following formula:

EPS = PPS / Step-N-Loop Ratio

A.1 Acceleration/Deceleration Range

The allowable acceleration/deceleration values depend on the **LSPD** and **HSPD** settings.

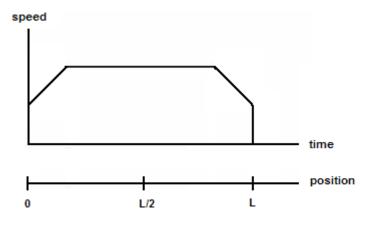
The minimum acceleration/deceleration setting for a given high speed and low speed is shown in Table A.0.

The maximum acceleration/deceleration setting for a given high speed and low speed can be calculated using the formula:

Note: The ACC parameter will be automatically adjusted if the value exceeds the allowable range.

Figure A.0

Examples:


- a) If **HSPD** = 20,000 pps, **LSPD** = 100 pps:
 - a. Min acceleration allowable: 1 ms
 - b. Max acceleration allowable: ((20,000 - 100) / 1,000) x 1,000 ms = **19900 ms** (19.9 sec)
- b) If **HSPD** = 900,000 pps, **LSPD** = 1000 pps:
 - a. Min acceleration allowable: 1 ms

b. Max acceleration allowable: ((900,000 - 1000) / 39,000) x 1000 ms = **23050** ms (23.05 sec)

A.2 Acceleration/Deceleration Range – Positional Move

When dealing with positional moves, the controller automatically calculates the appropriate acceleration and deceleration based on the following rules.

- 1) <u>ACC vs. DEC 1:</u> If the theoretical position where the controller begins deceleration is less than L/2, the acceleration value is used for both ramp up and ramp down. This is regardless of the EDEC setting.
- 2) <u>ACC vs. DEC 2:</u> If the theoretical position where the controller begins constant speed is greater than L/2, the acceleration value is used for both ramp up and ramp down. This is regardless of the EDEC setting.
- 3) <u>Triangle Profile:</u> If either (1) or (2) occur, the velocity profile becomes triangle. Maximum speed is reached at L/2.

Contact Information

Arcus Technology, Inc.

3159 Independence Drive Livermore, CA 94551 925-373-8800

www.arcus-technology.com

The information in this document is believed to be accurate at the time of publication but is subject to change without notice.